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Abstract The aim of this work is to review the available
literature on the details of low-level laser therapy (LLLT)
use for the enhancement of the proliferation of various
cultured cell lines including stem cells. A cell culture is one
of the most useful techniques in science, particularly in the
production of viral vaccines and hybrid cell lines. However,
the growth rate of some of the much-needed mammalian
cells is slow. LLLT can enhance the proliferation rate of
various cell lines. Literature review from 1923 to 2010. By
investigating the outcome of LLLT on cell cultures, many
articles report that it produces higher rates of ATP, RNA,
and DNA synthesis in stem cells and other cell lines. Thus,
LLLT improves the proliferation of the cells without
causing any cytotoxic effects. Mainly, helium neon and
gallium-aluminum-arsenide (Ga-Al-As) lasers are used for
LLLT on cultured cells. The results of LLLT also vary
according to the applied energy density and wavelengths to
which the target cells are subjected. This review suggests
that an energy density value of 0.5 to 4.0 J/cm2 and a

visible spectrum ranging from 600 to 700 nm of LLLT are
very helpful in enhancing the proliferation rate of various
cell lines. With the appropriate use of LLLT, the prolifer-
ation rate of cultured cells, including stem cells, can be
increased, which would be very useful in tissue engineering
and regenerative medicine.

Keywords Low-level laser therapy . Cell culture . Stem
cells . Proliferation . Tissue engineering . Regenerative
medicine

Introduction

Biotechnology has provided various tools and techniques to
generate treatments for previously incurable diseases. Cell
culture was one of the most useful techniques produced at
the turn of the 20th century [1]. It played a role in the
production of viral vaccines and hybrid cells as well as the
development of recombinant DNA technology [1]. Numerous
mammalian and non-mammalian cell lines can be cultured
[2]. The growth rate of mammalian cells is relatively slow
compared to bacteria. Bacterial cells can double every 30
min, while mammalian cells require about 18 to 24 h to
double [3]. This makes the mammalian culture vulnerable to
contamination, as a small number of bacteria would soon
outgrow a larger population of animal cells [3]. Therefore,
the development of various techniques involved with the
consistency and reproducibility of the cells have been the
focus of biotechnologists [4].

Low-level laser therapy (LLLT) has been used in wound
healing for the last 30 years [5]. It is also widely applied in
different branches of regenerative medicine (e.g., tissue
regeneration) [6] and dentistry, where it is used to enhance
the healing process [7]. Earlier, LLLT was shown to have
beneficial effects on a variety of pathological conditions
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including pain relief [8] and inflammation [9]. Recently, it
has been reported that LLLT enhances the proliferation of
mesenchymal and cardiac stem cells [10]. Although the
biological mechanisms underlying the biostimulatory
effects of LLLT are not fully understood, it has been
reported by several investigators that LLLT modulates
cellular metabolic processes, leading to an enhanced
regenerative potential for biological tissues [5, 11]. The
effects of LLLT on tissue metabolism are known as "laser
biostimulation". The positive biostimulatory effects of
LLLT on tissues are well known [12, 13].

In this review, we aimed to systematically review the
published scientific literature between 1923 and 2010 regard-
ing the use of LLLT to enhance the proliferation of different
lines of cultured cells without compromising the character-
istics and native properties of the cells. Moreover, we aimed to
shed light on additional points like gettingmaximum cell yield
after LLLT treatment. We searched databases including
MEDLINE/PubMed, Embase, and Google Scholar for LLLT,
cell culture, stem cells, proliferation, tissue engineering, and
regenerative medicine. We found no controlled studies that
compared different parameters of LLLT to get the maximum
cell yield.

Low-level laser therapy

LLLT irradiation refers to the use of red-beam or near-
infrared lasers with a wavelength of 600–1,100 nm and an
output power of 1-500 mW. This type of radiation is a
continuous wave or pulsed light that consists of a constant
beam of relatively low energy density (0.04–50 J/cm2), and
the laser is directed at the target tissue or monolayer of cells
using powers measured in milliwatts (mW). LLLT can
prevent cell apoptosis and improve cell proliferation,
migration, and adhesion at low-levels of red/near-infrared
light illumination [14, 15]. At low doses (2 J/cm2), LLLT
stimulates proliferation, while at high doses (16 J/cm2)
LLLT is suppressive, pointing to the dose dependence of
biological responses after light exposure [16]. However,
stimulation in cell proliferation has been shown outside
these ranges [17, 18]. A number of different laser light
sources, including helium-neon, ruby, and gallium-
aluminum-arsenide, have been used to deliver LLLT in
different treatments and on different schedules.

LLLT transmits energy at low levels and therefore does
not emit heat, sound, or vibrations. Its reactions are non-
thermal because there is no immediate increase in the
temperature of the laser-irradiated tissue. Experiments
following LLLT exposure have shown that the immediate
increase in heat of the target tissue is negligible (±1°C)
[19]. It has been confirmed by many investigators that the
temperature remained unchanged in fibroblast suspensions

during LLLT irradiation [20, 21]. Schneede et al. also
reported a temperature increase of less than 0.065°C, with
laser irradiation of 40 mW/cm2, using a microthermo probe
in a monolayer of cells [22]. In contrast, high-energy lasers
(e.g., carbon dioxide lasers and neodymium-YAG lasers)
are able to raise the tissue temperature high enough to cut
and vaporize them [23].

Molecular mechanisms of cell proliferation induced
by LLLT

LLLT can stimulate a number of biological processes,
including cell growth, proliferation [24], and differentiation
[25, 26]. In vitro, the effects on cell proliferation by LLLT
have been studied in various cell types including fibro-
blasts, endothelial cells, skeletal cells, keratinocytes, myo-
blasts, and other cell types [24–30]. However, the
molecular mechanism associated with the stimulatory
effects of LLLT has not been fully clarified [31]. One
classic mechanism involved is that the laser energy is
absorbed by intracellular chromophores and converted to
metabolic energy, since cellular ATP levels increase almost
twofold after He–Ne laser irradiation [32]. ATP acts via
multiple P2 nucleotide receptor subtypes to increase intra-
cellular calcium concentration (Ca2+) [33–35]. Simultane-
ously, ATP regulates protein synthesis, DNA synthesis, and
expression of immediate-early and delayed-early genes [35,
36]. In addition, Wilden et al. demonstrated that ATP
stimulates activation of ERK1/ERK2 in a phosphatidylino-
sitol 3-kinase (PI3K)-independent manner, and cell prolif-
eration requires both ERK1/ERK2 and PI3K activity
(pathways) [37]. In many cells, the extracellular signal-
regulated kinase (ERK) cascade plays an important role in
cellular proliferation. ATP-induced activation of ERK1/
ERK2 is dependent on the dual-specificity kinase mitogen-
activated protein kinase/ERK kinase (i.e., MEK) but
independent of phosphatidylinositol 3-kinase (PI3K) activ-
ity [38]. PI3K is a lipid kinase that promotes diverse
biological functions including cellular proliferation, survival,
and motility. The PI3K pathway is an important driver of cell
proliferation and cell survival, most notably in cells that are
responding to growth-factor–receptor engagement [39],
whereas the ERK pathway is a major regulator of cell
proliferation [40].

To further understand the mechanism, it is necessary to
identify the signal transduction pathways of cell prolifer-
ation stimulated by LLLT. It has been reported that LLLT
specifically activates MAPK/ERK pathway and conse-
quently induces satellite cell proliferation [41, 42]. In
another study, it was revealed that LLLT specifically
activates RTK/PKCs signaling pathway to promote cell
proliferation [43] and triggers a significant activation of
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ROS/Src pathway [44]. Furthermore, Akt can be activated
by either Src or PKCs protein kinase [45–48]. Therefore, it
is likely that Akt is involved in LLLT-induced cell
proliferation. On the other hand, LLLT treatment can
increase the level of intracellular ROS generation [44, 49–
51]. The increased intracellular oxidants can mediate the
activation of Akt [52, 53]. These reports suggest the
existence of ROS/Akt signaling pathway during LLLT-
induced proliferation.

Cell signaling after LLLT

Cell proliferation is a very important physiological effect of
LLLT that is used in basic experimental cell culture
procedures and clinical practice [54]. LLLT promotes
proliferation of multiple cells, which (especially red and
near-infrared light) is mainly through the activation of
mitochondrial respiratory chain and the initiation of cellular
signaling. The alterations in photoacceptor function are the
primary reactions, and the subsequent alterations in cellular
signaling and cellular functions are secondary reactions
[55]. The primary reactions after light absorption are
singlet-oxygen hypothesis, redox properties alteration
hypothesis, nitric oxide hypothesis, transient local heating
hypothesis, and superoxide anion hypothesis [56]. The
secondary reactions after light absorption are cellular
signaling pathways, mitochondrial retrograde signaling
included [57].

However, the mechanisms of cell proliferation induced
by LLLT are poorly understood [54]. Various mechanisms
for the mitogenic effects of low-power laser irradiation
have been proposed, including ligand-free dimerization and
activation of specific receptors that are in the "right
energetic state" to accept the laser energy, leading to their
autophosphorylation and down-stream effects [49], activa-
tion of calcium channels resulting in increased intracellular
calcium concentration and cell proliferation [58–62].
Irradiation of red and near-infrared light is absorbed by
mitochondrial respiratory chain components, resulting in
the increase of reactive oxygen species (ROS), and
adenosine triphosphate (ATP)/or cyclic AMP, and initiating
a signaling cascade that promotes cellular proliferation and
cytoprotection [57, 62–67]. Following increased ATP and
protein synthesis after LLLT, the expressions of growth
factors and cytokines increase and ultimately lead to cell
proliferation [68, 69].

Biophysical mechanism of action of LLLT

Phototherapy is based on the effects of light energy on cell
metabolism of living systems. Biological responses of cells

to visible and near-IR (laser) radiation occur due to physical
and/or chemical changes in photoacceptor molecules,
components of respiratory chains [70, 71]. Some of the
major changes induced by laser in the irradiated cell are
changes in redox properties and acceleration of electron
transfer, nitric oxide (NO) release from catalytic centre of
cytochrome c oxidase, superoxide generation, photodynamic
action, and changes in biochemical activity induced by local
transient heating of chromophores [72].

Biological effects of LLLT

Stimulation of cells with LLLT has been examined in
numerous contexts. LLLT stimulates wound healing, colla-
gen synthesis, nerve regeneration, enhanced remodeling
and repair of bone, restoration of normal neural function
following injury, normalization of abnormal hormonal
function, pain attenuation, stimulation of endorphin release,
and modulation of the immune system [73–77]. The
photonic energy is converted to chemical energy within
the cell, in the form of ATP, which leads to normalization of
cell function, pain relief, and healing. Cell membrane
permeability is altered, followed by physiological changes
in the target cells [78]. The effects of LLLT on wound
healing are often attributed to increased cell proliferation
[79].

It has been reported that irradiation of cells at certain
wavelengths can activate specific biochemical reactions as
well as alter the whole cellular metabolism [49]. LLLT has
shown a variety of effects including increased cell numbers
[80], increased DNA synthesis [81], and increased collagen
production [73] in several in vitro studies on cultured
human fibroblasts. Another interesting finding is that laser
irradiation also stimulates cell attachment to a plastic
substrate [20]. Boulton and Marshall observed that laser-
irradiated cultures exhibit a significant increase in the
number of human skin fibroblasts that grow on the plastic
substrates compared to their respective non-irradiated
controls after 24 and 48 h [20]. The effects of LLLT on
cell cultures have been studied most extensively by Karu
[82]. It was also reported that the stimulation of cellular
proliferation is dependent on the dose of laser irradiation, as
lower doses increase the cell proliferation rate and other
cellular functions while higher doses of LLLT have
negative effects, as described above [80, 83].

Mechanism of action of LLLT

One theory regarding the mechanism of action of LLLT
purports that the laser is capable of influencing photo-
receptors in the cells. This mechanism is referred to as

Lasers Med Sci



photobiology or biostimulation. It has been reported that
photobiostimulation occurs via the electron transport chain
enzymes in mitochondria, inducing high cell respiration
rates by either the endogenous porphyrins in the cell or by
cytochrome c [84], which increases cellular metabolism and
function [80, 85]. The biostimulating effect of LLLT results
in an increase in microcirculation, higher production rates
for ATP, RNA, and DNA synthesis, thus improving cellular
oxygenation, nutrition, and regeneration [86] and an
enhanced mitochondrial electron transport system [85].
Photons enter the cell and are readily absorbed by bio-
logical chromophores located either in the mitochondria or
in the cell membrane. These chromophores strongly interact
with the laser irradiation. The photonic energy is converted
to chemical energy within the cell, in the form of ATP,
which enhances cellular functions and cell proliferation
rates. Cell membrane permeability is altered, followed by
physiological changes in the target cells. The magnitude of
the laser biostimulation effect depends on the wavelength
used as well as the physiological state of the cell at the
moment of irradiation [87].

To explain the biostimulation effect of LLLT, Karu
proposed a chain of molecular events starting with the
absorption of light by a photoreceptor and leading to the
photoactivation of enzymes in the mitochondria, including
the signal transduction and amplification events, and ending
with the photoresponse [70, 88]. Light is absorbed by
components of the respiratory chain, which leads to
changes in both the mitochondria and the cytoplasm. At
low-laser doses, additional Ca2+ is transported into the
cytoplasm by an antiport process that triggers or stimulates
various biological processes such as DNA and RNA
synthesis, cell mitosis, and cell proliferation. At higher
doses, too much Ca2+ is released, which results in hyper-
activity for the calcium-adenosine triphosphatase (ATPase)
calcium pumps and exhausts the ATP pool of the cell,
thereby inhibiting cell metabolism [88, 89].

Effects of different LLLT wavelengths on cellular
functions

LLLT has been used with visible, infrared, and ultraviolet
(UV) light, but the most effective results have come from
using the visible spectrum, ranging from 600–700 nm [90].
In various in vitro studies it was observed that 860-nm laser
light stimulates cellular proliferation [16], 812-nm laser
light increases DNA synthesis [81], 660-nm laser light up-
regulates the production of basic fibroblast growth factor
[91], and 632.8-nm laser light transforms fibroblasts into
myofibroblasts in cultured fibroblasts [92]. It was also
observed that a 632.8-nm laser light used in cultured
keratinocytes was found to increase cellular proliferation

[93], stimulate the release of IL-1 and IL-8 [24], and
increase the motility rate [94], while a 780-nm laser light
was shown to stimulate cellular proliferation [63] (Table 1).
Macrophages are activated by 632.8-nm laser light, and
various laser wavelengths reportedly increase growth factor
secretion from cultured macrophages [95, 96]. There are
relatively less data available on the effects of low-intensity
laser irradiation on vascular endothelial cells. However,
increased vascular endothelial cell proliferation has been
described in vitro [97].

It has also been reported that the proliferation rate is at a
maximum in the presence of 665-nm and 675-nm light,
while 810-nm light inhibits the proliferation of cultured
fibroblasts [98]. Therefore, not every report concerning
LLLT supports its efficacy. Low-intensity laser irradiation
from a gallium-aluminum-arsenide laser failed to increase
the proliferation, migration, or adhesion of cultured
keratinocytes or fibroblasts [99]. In addition, it has been
reported by many investigators that in vitro biostimulation
is dependent on many factors, including laser irradiation
parameters such as wavelength, fluence, laser output power
[100], and energy density [101, 102], as well as the type of
cell being irradiated [98]. Parameters that are helpful for
increasing proliferation rates can sometimes have adverse
effects on protein synthesis [101, 103]. Therefore, it is
crucial to know the correct combination of parameters (e.g.,
wavelength, power density, and energy density) to arrive at
the maximum proliferation rate of cells.

Karu also stated that the laser effect depends on the
radiation, wavelength, dose, and intensity as well as on other
cell culture conditions [70, 104]. Therefore, it is possible that
cells in tissues or cellular cultures may not respond to LLLT
in exactly the same way and that similar parameters can have
different effects on different cultured cells.

Biophasic dose response of LLLT

LLLT delivered at low doses may produce a better result
when compared to the same wavelength delivered at high
doses; this phenomenon is called "biphasic dose response"
or "hormesis" [105]. The modern term "hormesis" was first
used by Stebbing in 1982 [106] and has been thoroughly
reviewed by Calabrese [105, 107]. A biphasic dose
response has been demonstrated many times in LLLT
research by several investigators [108, 109] and the
"Arndt-Schulz Law" is frequently quoted as a suitable
model for describing the dose-dependent effects of LLLT
[68, 110–112]. According to the 'Arndt-Schulz law', weak
stimuli slightly accelerate vital activity and stronger stimuli
raise it further; but when a peak is reached, then stronger
stimuli suppress it, until a negative response is finally
achieved [113].
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A "biphasic" curve can be used to explain the expected
dose response to light at a subcellular, cellular, tissue, or
clinical level. The biphasic curve will be helpful to identify
the sufficient energy level that will be applied to get
maximum biostimulation. If insufficient energy is applied
then there will be no response (because the minimum
threshold has not been met). If more energy is applied, then
a threshold is crossed and biostimulation disappears and is
replaced by bioinhibition instead [15, 112].

Effects of reciprocity of exposure time and irradiance
of LLLT on cellular proliferation

It has been reported that the outcome of LLLT can be
influenced by varying the irradiance and exposure time,
despite keeping the energy density constant. A unique
dose–frequency regime may exist for tissues and cell
lines and that the determination of that treatment
paradigm is necessary in order to achieve maximal
stimulation of cellular metabolism and proliferation
[108]. Lanzafame et al. also explained that identification
of the proper treatment parameters for the particular
cell lines or tissue is crucial for achieving maximum
photobiostimulation [108].

Contradictory reports of LLLT on cell proliferation

Cell proliferation of various cultured cell lines induced
by LLLT has been reported by various investigators, as
is described above. However, few negative effects of
LLLT regarding cell proliferation have been reported. In
one report, 830-nm Ga-Al-As lasers could not enhance
the proliferation of cultured fibroblasts and keratinocytes
as presented in Table 1 [99]. In another study, it was
observed that fibroblasts were proliferated faster than
endothelial cells in response to laser irradiation. These
observations suggest that both wavelength and cell type
influence cell proliferation response to low-level laser
irradiation [98].

It is also noticeable that maximum cell proliferation
occurred at 665–675 nm, whereas irradiation at 810-nm
(or higher) wavelengths inhibited cell division. The
magnitude of the LLLT effect on cell proliferation
depends on the physiological state of the cell at the
moment of irradiation. It has been reported that LLLT
can stimulate cell proliferation if the cells are growing
poorly at the time of irradiation. However, if the cells are
fully functional, or growing in a serum-rich environment
(10% FBS) at the moment of irradiation, then there is
nothing for LLLT to stimulate and no therapeutic benefit
will be observed [88].

Types of LLLT used in cell proliferation

Although many types of LLLT have been used to deliver
irradiation to different cell lines in order to achieve the
maximum proliferation rate (Table 1), mainly two types of
LLLT are used for in vitro studies. One uses a helium neon
(He-Ne) laser at a wavelength of 632 nm that transmits a
red light, while the second type uses gallium-aluminum-
arsenide (Ga-Al-As) with a wavelength of 830 nm, which is
in the infrared portion of the spectrum. Most in vitro studies
have been carried out with the He-Ne laser [99].

Effects of LLLT on bone marrow mesenchymal stem
cells

Bone marrow-derived mesenchymal stem cells (BMSCs)
have been used to treat many diseases like osteogenesis
imperfecta, mucopolysaccharidoses, graft-versus-host dis-
ease, and myocardial infarction [114–117]. Due to their
availability and expansion capacity, BMSCs have become a
promising source of adult stem cells for regenerative
medicine [118]. Usually, adequate numbers of BMSCs are
required for clinical applications because the efficacy of
grafted BMSCs is limited in host pathological micro-
environments, even when transplanted at very high cell
dosages [119–121]. Therefore, Hou at al. used LLLT to
improve the proliferation rate of BMSCs (Table 1) using an
indium-gallium-arsenate-phosphate (In-Ga-As-P) diode
laser with a wavelength of 635 nm to irradiate the BMSCs
[122]. During the experiments, BMSCs were irradiated for
75, 150, 300, and 750 s with energy density values of 0.5,
1.0, 2.0, and 5.0 J/cm2, respectively (a control group was
similarly treated but the cells were not irradiated). Hou et
al. did not find any significant cytotoxicity differences
between the non-irradiated and irradiated groups [122]. On
the other hand, the proliferation rate of BMSCs was
significantly higher in the irradiated group when compared
to the non-irradiated groups.

Effects of LLLT on mesenchymal stem cells
in stimulating an osteogenic phenotype

BMSCs, being pluripotent, can differentiate into several
cell lineages when a suitable immediate environment
(including extracellular matrix, spatial and temporal signals,
growth factors, and cell–cell interactions) is provided [123–
125]. Recently it was reported that BMSCs can be
expanded and terminally differentiated into osteoblasts,
chondriocytes, adipocytes, myoblasts, neural cells, or
hematopoietic-supporting stroma in the presence of a
suitable microenvironment and/or stimuli [123, 126, 127].
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It has also been reported that LLLT on osteoblasts
stimulates matrix production, DNA synthesis in cultured
cells, and bone nodule formation [128]. These consequen-
ces have been validated by in vivo studies, proving the
biostimulatory effect of LLLT on bone regeneration [129,
130]. Abramovitch-Gottlib et al. seeded BMSCs on three-
dimensional (3-D) coralline (Porites lutea) biomatrices and
irradiated them with a polarized He-Ne red laser (wave-
length of 632.8 nm) to stimulate the osteogenic phenotype
of BMSCs [131]. The irradiated samples showed enhanced
tissue formation with the appearance of phosphorous peaks
along with calcium and phosphate incorporation into the
newly formed tissue. Higher ossification levels were
observed in the irradiated samples when compared to the
control group. Therefore, Abramovitch-Gottlib et al.
suggested that 3-D crystalline biomatrices in conjunction
with LLLT have biostimulatory effects on the conversion of
BMSCs into bone-forming cells and on the induction of
ex-vivo ossification [131].

LLLT promotes proliferation of mesenchymal
and cardiac stem cells in culture

Tuby et al. used a diode (Ga-As) laser at 804 nm with an
energy density of 1 to 3 J/cm2 to irradiate mesenchymal and
cardiac stem cells (Table 1) [10]. Control cells were also
treated in the same way as the irradiated cells but the
control cells were not irradiated. The number of mesen-
chymal and cardiac stem cells increased significantly after
the LLLT when compared to the control cells. That study
also demonstrated that LLLT promotes the proliferation of
mesenchymal and cardiac stem cells in vitro. These results
may have an important impact on regenerative medicine.
The power and energy densities used during this LLLT did
not induce any adverse effects on cells in culture and did
not cause any histopathological changes in myogenic
satellite cells in culture. Therefore, it can be concluded that
the power and energy densities applied during this LLLT
can be safely employed for the irradiation of cells in vitro.

LLLT enhances osteogenic differentiation
in mesenchymal stem cells

Recently, red light at 647 nm was used to enhance
osteogenic differentiation in mesenchymal stem cells
[132]. Mesenchymal stem cells were irradiated with low-
energy red light at 647 nm for different time periods and
energy densities. Non-irradiated (control) cells were main-
tained under the same conditions as the irradiated cells. The
red light at 647 nm was observed to significantly increase
osteoblast mineralization in irradiated cells, after 4 to 5

days, when compared to non-irradiated cells. This result
indicates that red light promotes osteoblast differentiation.

In another study, mesenchymal stem cells (MSCs) were
irradiated with a blue laser (wavelength 405 nm) for 180 s
via a fiber attached to the bottom of the culture dish. This
study showed that blue laser irradiation was able to promote
extracellular calcification of MSCs and induced the trans-
location of circadian rhythm protein cryptochrome 1
(CRY1 protein) from the cytoplasm to the nucleus. CRY1
is a master regulator of circadian clock that regulates the
extracellular calcification of MSCs and this clock controls
the bone mass [133].

LLLT enhances the proliferation of human dental pulp
stem cells

Human dental pulp stem cells (hDPSCs) were treated with
LLLT to increase the proliferation rate [134]. These stem
cells were irradiated with indium-gallium-aluminum-phos-
phate (InGaAlp) lasers at a wavelength of 660 nm and an
energy density of 3 J/cm2, along with a control group (non-
irradiated cells). This experiment showed that hDPSCs
respond positively to LLLT, with improvements in cell
growth when compared to the control group (Table 1).
These results open the possibility of using LLLT for
improving the growth rate of other types of stem cells.

Effects of LLLT on adult human adipose-derived stem
cells

Adult human adipose-derived stem cells were irradiated
using a diode laser at a wavelength of 635 nm and an
energy density of 5 J/cm2 [135]. The results of this
experiment revealed that the proliferation rate of irradiated
cells, measured by optical density, increased significantly
when compared to non-irradiated cells. Moreover, Western-
blot analysis and immunocytochemical labeling proved that
the stem cell marker β 1-integrin was present at increased
levels in irradiated cells compared to non-irradiated cells.

How to use LLLT to obtain the maximum proliferation
of cells

Cell cultures should be 20% confluent at the time of
irradiation to obtain the maximum yield from LLLT. The
medium should be replaced with phosphate buffered saline
(PBS) at the time of irradiation. Otherwise, serum will
interfere with the reaction during irradiation. This proce-
dure should be performed in the dark [10]. Most studies
suggest that laser biostimulation occurs at fluences between
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0.05 and 10 J/cm2, whereas fluences above 10 J/cm2 have
bioinhibitory effects [5, 136, 137].

Conclusion and summary

In the past, LLLT has been used for pain relief, inflammation
reduction, and wound healing. Recently, LLLT has been used
to enhance the proliferation of stem cells and several other cell
lines, which is essential for performing several different
experiments related to disease control in humans. Effects of
LLLT on proliferation of cell cultures depend on consumed
energy density, total energy, number of irradiated points, and
diameter of beam or irradiated area, type of laser, and
sometimes on the type of cells as well (Table 1), as some cell
lines give effective results with one type of laser and negative
results with other laser types (Table 1). Most of the reports
[81, 101–104, 144] showed that infrared wavelengths caused
positive effects in fibroblast cell cultures, whereas other
contradictory effects were reported [99]. These parameters
are given and compared in Table 1. This review suggests that
an energy density value from 0.5 to 4.0 J/cm2 and a visible
spectrum ranging from 600 to 700 nm for LLLT are very
helpful in enhancing the proliferation of various cell lines.
LLLT is able to increase cell numbers, DNA, and RNA
synthesis and collagen production, and in addition is able to
initiate mitosis in cultured cells. LLLT stimulates the photo-
receptors present on the mitochondrial and cell membranes to
convert light energy into chemical energy in the form of ATP
within the cell, which enhances cellular functions and cell
proliferation rate. Certain rules must be followed to obtain the
optimal benefits from LLLT, as described in this review.
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